Literatur
Chartrand, G., Lesniak, L., & Zhang, P. (2010). Graphs & digraphs. Chapman and Hall/CRC.
Gonthier, G. (2008). Formal proof–the four-color theorem. Notices of the AMS, 55(11), 1382-1393.
Huang, H. (2019). Induced subgraphs of hypercubes and a proof of the Sensitivity Conjecture. arXiv preprint arXiv:1907.00847.
MacKenzie, D. A. (2004). Mechanizing proof: computing, risk, and trust. MIT Press.
Maddison, I. (1897). Note on the history of the map-coloring problem. Bulletin of the American Mathematical Society, 3(7), 257.
Robertson, N., Sanders, D. P., Seymour, P. D., & Thomas, R. (1996, July). Efficiently four-coloring planar graphs. In 28th Annual ACM Symposium on Theory of Computing, STOC 1996 (pp. 571-575). Association for Computing Machinery.
Soifer, A. (2009). Kempe–Heawood’s Five-Color Theorem and Tait’s Equivalence. In The Mathematical Coloring Book (pp. 176-186). Springer, New York, NY.
Velminski, W., & Euler, L. (2008). Die Geburt der Graphentheorie. Kadmos, Berlin.
Wilson, R. (2013). Four Colors Suffice: How the Map Problem Was Solved-Revised Color Edition (Vol. 30). Princeton university press.
Weiterführende Literatur
Aigner, M. (2015). Graphentheorie: Eine Einführung aus dem 4-Farben Problem. Springer-Verlag.
Dietzfelbinger, M., Mehlhorn, K., & Sanders, P. (2014). Algorithmen und Datenstrukturen: Die Grundwerkzeuge. Springer-Verlag.